Insulin receptor substrate proteins and neuroendocrine function.

نویسنده

  • D J Withers
چکیده

A family of insulin receptor substrate (IRS) proteins mediates the pleiotropic effects of insulin and insulin-like growth factor 1 (IGF-1) on cellular function by recruiting several intracellular signalling networks. Conventional murine knockout strategies have started to reveal distinct physiological roles for the IRS proteins. Deletion of Irs1 produces a mild metabolic phenotype with compensated insulin resistance but also causes marked growth retardation. In contrast, mice lacking IRS-2 display nearly normal growth but develop diabetes owing to a combination of peripheral insulin resistance and beta-cell failure. As well as the classical metabolic events regulated by insulin signalling pathways, studies in lower organisms have implicated insulin/IGF-1 signalling pathways in the control of food intake and reproductive function. Our analysis of IRS-2 knock-out mice shows that female mice are infertile owing to defects in the hypothalamus, pituitary and gonad. IRS-2(-/-) mice have small, anovulatory ovaries with reduced numbers of follicles. Levels of the pituitary hormones luteinizing hormone and prolactin and gonadal steroids are low in these animals. Pituitaries of IRS-2(-/-) animals are decreased in size and contain reduced numbers of gonadotrophs. Additionally, IRS-2(-/-) females display increased food intake and develop obesity, despite elevated leptin levels, suggesting abnormalities in hypothalamic function. Coupled with recent observations that brain-specific deletion of the insulin receptor causes a similar phenotype, these findings implicate IRS signalling pathways in the neuroendocrine regulation of reproduction and energy homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications.

Receptors for insulin are widely distributed in the brain and pituitary. The current hypothesis on receptor function in these regions points to a role of insulin as a mediator in the communication of the peripheral endocrine system with the brain via various steps of the neuroendocrine axis. Recent data demonstrate that receptor-positive neurons in the brain, i.e. in the hypothalamus, and secre...

متن کامل

The Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action

Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...

متن کامل

Investigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats

Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...

متن کامل

Genetic analysis of insulin signaling in Drosophila.

Studies in the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have revealed that components of the insulin signaling pathway have been highly conserved during evolution. Genetic analysis in Drosophila suggests that structural conservation also extends to the functional level. Flies carrying mutations that reduce insulin signaling have a growth deficiency phenotype sim...

متن کامل

The Role of the Cullin-5 E3 Ubiquitin Ligase in the Regulation of Insulin Receptor Substrate-1

Background. SOCS proteins are known to negatively regulate insulin signaling by inhibiting insulin receptor substrate-1 (IRS1). IRS1 has been reported to be a substrate for ubiquitin-dependent proteasomal degradation. Given that SOCS proteins can function as substrate receptor subunits of Cullin-5 E3 ubiquitin ligases, we examined whether Cullin-5 dependent ubiquitination is involved in the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 29 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2001